Optimization of freezing and thawing protocols
for reduction of injuring effects of cryopreservation

N.D.Botkin, K.-H.Hoffmann, N.Mayer, V.L.Turova

Technische Universität München, Mathematical Faculty
Chair of Mathematical Modelling
Garching near Munich, Germany

SIAM Conference on Optimization, Darmstadt, May 16-19, 2011
Postponed repair of teeth using stored stem cells

Some damaging factors of cryopreservation

Freezing

- Cellular dehydration and shrinkage due to the osmotic outflow through the cell membrane (slow cooling)
- Great pressure exerted on the cell membrane due to earlier freezing of the extracellular liquid
- Growth of the dendritic seeds that can cause formation of large ice crystals during subsequent thawing

Thawing

- Further osmotic dehydration occurring during the warming phase, if the osmotic equilibrium was violated because of the rapid cooling (rapid cooling but slow thawing)
- Rehydration and swelling of cells when as more ice melts
- Recrystallization of small ice crystals into large ones (rapid cooling but slow thawing)
Mathematical model.
Ice formation in small pores and channels

\[
\frac{\partial e(\theta)}{\partial t} - \mathcal{K}\Delta \theta = 0, \quad e(\theta) = \rho C\theta + \rho L\beta_\ell(\theta),
\]

\[
\beta_\ell(\theta) = \phi \left(\frac{L(\theta - \theta_f)}{(T_0 + \theta_f)(T_0 + \theta)} \right) - \text{ unfrozen water content}
\]

The function \(\phi \) is recovered from data obtained in experiments with tissue samples.

\(e \) - the internal energy
\(\theta \) - the Celsius temperature, \(\mathcal{K} \) - the heat conductivity
\(\rho \) - the density (assumed being equal for ice and water)
\(C \) - the heat capacity (assumed being equal for ice and water)
\(L \) - the latent heat of freezing
\(\theta_f \) - the freezing point in °C
Averaging of the model and reduction to ODEs

Film heat transfer condition on Γ_1 and Γ_2 is assumed

Integr. Ω_1:

$$
\frac{d}{dt} \int_{\Omega_1} e_1 \, dx + \lambda \int_{\Gamma_1} (\theta_1 - \theta_E) \, ds + \alpha \int_{\Gamma_2} (\theta_1 - \theta_2) \, ds = 0
$$

Integr. Ω_2:

$$
\frac{d}{dt} \int_{\Omega_2} e_2 \, dx + \alpha \int_{\Gamma_2} (\theta_2 - \theta_1) \, ds = 0
$$

Mean values:

$$
\hat{e}_i = \frac{1}{|\Omega_i|} \int_{\Omega_i} e_i \, dx; \quad \hat{\theta}_i = \frac{1}{|\Gamma_i|} \int_{\Gamma_i} \theta_i \, dx
$$

$$
\hat{\theta}_E = \frac{1}{|\Gamma_1|} \int_{\Gamma_1} \theta_E \, dx; \quad \hat{\alpha}_i = \frac{|\Gamma_2|}{|\Omega_i|} \alpha; \quad \hat{\lambda} = \frac{|\Gamma_1|}{|\Omega_1|} \lambda
$$

Resulting ODEs:

$$
\frac{d}{dt} \hat{e}_1 = -\hat{\alpha}_1 [\hat{\theta}_1 - \hat{\theta}_2] - \hat{\lambda} [\hat{\theta}_1 - \hat{\theta}_E],
$$

$$
\frac{d}{dt} \hat{e}_2 = -\hat{\alpha}_2 [\hat{\theta}_2 - \hat{\theta}_1].
$$
Comparison of two representations

\[\frac{d}{dt} \hat{e}_1(\hat{\theta}_1) = -\alpha_1 [\hat{\theta}_1 - \hat{\theta}_2] - \lambda [\hat{\theta}_1 - \hat{\theta}_E], \]

\[\frac{d}{dt} \hat{e}_2(\hat{\theta}_2) = -\alpha_2 [\hat{\theta}_2 - \hat{\theta}_1]. \]

\[\hat{e}_i(\hat{\theta}_i) = \rho C \hat{\theta}_i + \rho L \beta^i_\ell(\hat{\theta}_i), \]

\[\hat{\theta}_i = \Theta_i(\hat{e}_i) \text{ inverse of } \hat{e}_i(\hat{\theta}_i) \]

\[\dot{\hat{e}}_1 = -\alpha_1 [\Theta_1(\hat{e}_1) - \Theta_2(\hat{e}_2)] - \lambda [\Theta_1(\hat{e}_1) - \hat{\theta}_E], \]

\[\dot{\hat{e}}_2 = -\alpha_2 [\Theta_2(\hat{e}_2) - \Theta_1(\hat{e}_1)]. \]
Controlled system with disturbances

Notation: \(\hat{e}_1 \rightarrow x, \hat{e}_2 \rightarrow y, \hat{\theta}_E \rightarrow z, \hat{\alpha}_i \rightarrow \alpha_i, \hat{\lambda} \rightarrow \lambda \)

Controlled system:
\[
\begin{align*}
\dot{x} &= -\alpha_1 [\Theta_1(x) - \Theta_2(y)] - \lambda [\Theta_1(x) - z] + v_1, \\
\dot{y} &= -\alpha_2 [\Theta_2(y) - \Theta_1(x)] + v_2, \\
\dot{z} &= u.
\end{align*}
\]

\(z \) is the “chamber” temperature, \(u \) the cooling rate, \(v_i \) errors in data interpreted as disturbances: \(\mu_1 \leq u \leq \mu_2, \ |v_1| \leq \nu_1, \ |v_2| \leq \nu_2 \)

Phase constraint: \(\omega(x, y, z) \leq 0 \) (specifies e.g. bounds on the temperature inside and outside the cell)

Objective functional:
\[
\max \left\{ \int_0^{t_f} \sigma^2(x(\tau), y(\tau))d\tau, \max_{\tau \in [0,t_f]} \omega(x(\tau), y(\tau)), z(\tau) \right\}
\]

where \(\sigma(x, y) \) estimates e.g. the difference of the ice content in the intra- and extracellular regions
Value function and Hamilton-Jacobi equation

Value function:

\[V(t_0, x_0, y_0, z_0) = \min_{u(t,x)} \max_{v_1(t),v_2(t)} J|_{t_0,x_0,y_0,z_0} \]

Hamiltonian:

\[H(x, y, z, p_1, p_2, p_3) = \max_{|v_i| \leq \nu_i} \min_{|u| \leq \mu} \left(\dot{x}p_1 + \dot{y}p_2 + \dot{z}p_3 \right) + \sigma^2(x, y) \]

Isaacs-Bellman / Hamilton-Jacobi equation:

\[V_t - H(x, y, z, V_x, V_y, V_z) = 0, \quad V(t_f, x, y, z) = \omega(x, y, z) \]

Grid function:

\[V^n(x_i, y_j, z_k) = V(n\tau, i\Delta_x, j\Delta_y, k\Delta_z), \quad N \cdot \tau = t_f \]

Difference scheme for finding viscosity solutions:

\[V^{n-1}(x_i, y_j, z_k) = V^n(x_i, y_j, z_k) + \tau H(x_i, y_j, z_k, V_x^n, V_y^n, V_z^n), \]

\[V^N(x_i, y_j, z_k) = \omega(x_i, y_j, z_k) \]
Monotone “upwind” finite difference scheme

*Approximation of the spatial derivatives:

\[V^n_{x} f_1 = p_1^R f_1^+ + p_1^L f_1^−, \quad V^n_{y} f_2 = p_2^R f_2^+ + p_2^L f_2^−, \quad V^n_{z} f_3 = p_3^R f_3^+ + p_3^L f_3^− \]

\[f_1^+, \ f_2^+, \ f_3^+ \] are the positive and \[f_1^−, \ f_2^−, \ f_3^− \] the negatives parts of the RHSs of the controlled system: \[a^+ = \max(a,0), \ a^- = \min(a,0) \]

\[\hat{V}^{n−1}(x_i, y_j, z_k) = V^n(x_i, y_j, z_k) + \tau \max_{|v_i| \leq \nu_i} \min_{\mu_1 \leq u \leq \mu_2} \sum_{m=1}^{3} (p^R_m \cdot f^+_m + p^L_m \cdot f^-_m) \]

\[V^{n−1}(x_i, y_j, z_k) = \max \{ \hat{V}^{n−1}(x_i, y_j, z_k), \omega(x_i, y_j, z_k) \} \]

Theorem (convergence)

The finite difference scheme is monotone. The grid function converges point-wise to the value function as \(\tau \rightarrow 0 \). The convergence rate is \(\sqrt{\tau} \).

Optimal feedback control

Current time t_n, current position $(x(t_n), y(t_n), z(t_n))$

$$\mathcal{U}_\varepsilon = \{(x_i, y_j, z_k) \in \mathbb{R}^3 : |x_i - x(t_n)| \leq \varepsilon, |y_j - y(t_n)| \leq \varepsilon, |z_k - z(t_n)| \leq \varepsilon\}$$

$$(x_*, y_*, z_*)$$

$$V^n(x_*, y_*, z_*) = \min_{(x_i, y_j, z_k) \in \mathcal{U}_\varepsilon} V^n(x_i, y_j, z_k)$$

* Extremal aiming

$$u(t_n) = \arg \max_{\mu_1 \leq u \leq \mu_2} \left((x_* - x(t_n)) f_1 + (y_* - y(t_n)) f_2 + (z_* - z(t_n)) f_3 \right)$$

f_i are the right hand sides of the controlled system computed at

$x(t_n), y(t_n), z(t_n), u$, and v

Simulations.
1. Cell freezing with accounting for supercooling effects

The functional expresses the balance of ice formation inside and outside the cell:

\[
J = \int_{0}^{t_f} \left| \beta_1^1(\Theta_1(x(\tau))) - \beta_2^2(\Theta_2(y(\tau))) \right|^2 d\tau, \quad \beta_{i(ce)}^j = 1 - \beta_{i}^j, \quad j = 1, 2
\]

Simultaneously, this functional expresses the water outflow from the cell:

\[
c_{in} - c_{out} = \frac{c_{in}^0}{\beta_1^2} - \frac{c_{out}^0}{\beta_1^1} \quad | \quad c_{in}^0 = c_{out}^0
\]
\[\theta^1_f - \theta^2_f = -13^\circ C, \text{ with phase constraint: } z \leq -2^\circ : \omega(x, y, z) = z - 2 \]

2.7 less liquid outflow with optimal control!
2. Cell thawing with optimization of the osmotic inflow

β_{ℓ} - freezing

θ - thawing

m_0 - salt amount in the cell

W_0 - initial cell volume

$W_0 \beta_{\ell}^2$ - water volume in the cell

$g\left(\frac{m_0}{W_0 \beta_{\ell}^2}\right)$ - salt concentration in the cell

c_0 - concentration of physiologic salt solution

c_* - some limiting concentration

Functional to minimize expresses amount of water inflow into the cell

$$J = \alpha \int_0^{t_f} \left| c_0 - g\left(\frac{m_0}{W_0 \beta_{\ell}^2(\Theta_2(y(\tau)))}\right)\right| d\tau$$
Phase constraints: \(z \leq 40^\circ, \ z \geq -50^\circ, \ \Theta_2(y) \leq 20^\circ \)

65 % less water inflow with optimal control!
Conclusions

Using these techniques, some other injuring effects of cryopreservation like generation of the dendrite seeds during freezing and subsequent dendrite growth during thawing can also be accounted for.

Implementation of optimal temperature profiles for freezing devices like e.g. IceCube (SY-LAB Geräte GmbH, Austria) is possible.

The work is supported by the German Research Society (DFG), Project SPP 1253