Fast $SO(3)$ Fourier Transforms at nonequispaced nodes and its Application to Protein-Protein Docking

Antje Vollrath

University of Lübeck
Institute of Mathematics
A brief outline

1. About $SO(3)$, $L^2(SO(3))$ and \mathbb{D}_B

2. Nonequispaced Discrete Fourier Transforms on $SO(3)$ (NDSOFT)

3. The discrete Wigner transform

4. The fast Wigner transform

5. The Nonequispaced Fast $SO(3)$ Fourier Transform (NFSOFT)

6. The Docking Problem
The rotation group \(SO(3) \)

Special Orthogonal group \(SO(3) \):
- rotations in \(\mathbb{R}^3 \)
- \(SO(3) = \{ R \in \mathbb{R}^{3 \times 3} : \det(R) = 1, R^T R = I_3 \} \)
- Parametrization (Euler angles):

Given three angles \(\alpha, \gamma \in [0, 2\pi) \) and \(\beta \in [0, \pi] \), the corresponding rotation \(R(\alpha, \beta, \gamma) \) is given by

\[
R(\alpha, \beta, \gamma) = R_{ZYZ}(\alpha, \beta, \gamma) = R_Z(\alpha) R_Y(\beta) R_Z(\gamma)
\]

where

\[
R_Z(\varphi) = \begin{pmatrix}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad R_Y(\theta) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]
A Basis System for $L^2(SO(3))$

We denote

- a rotation $g \in SO(3)$ by $g(\alpha, \beta, \gamma) = R_{ZYX}(\alpha, \beta, \gamma)$
- a function $f : SO(3) \to \mathbb{C}$ by $f(g(\alpha, \beta, \gamma)) = f(\alpha, \beta, \gamma)$.

We now consider the Hilbert space $L^2(SO(3))$ with the inner product of two functions $f_1, f_2 \in L^2(SO(3))$ given by

$$
\langle f_1, f_2 \rangle = \int_{SO(3)} f_1(g) \overline{f_2(g)} \, dg
$$

$$
= \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} f_1(\alpha, \beta, \gamma) \overline{f_2(\alpha, \beta, \gamma)} \sin(\beta) \, d\alpha d\beta d\gamma
$$

and the corresponding norm

$$
\| f \|_{L^2(SO(3))} = \sqrt{\langle f, f \rangle}.
$$

We are looking for a basis system of $L^2(SO(3))$.
Wigner-D and Wigner-d functions

The Wigner-D functions $D_{lm}^m(g)$ are the eigenfunctions of the Laplace operator for $SO(3)$.
They are given for $|m|, |n| \leq l \in \mathbb{N}_0$ by

$$D_{lm}^m(\alpha, \beta, \gamma) = e^{-im\alpha}e^{-in\gamma}d_{lm}^m(\cos \beta)$$

where

$$d_{lm}^m(x) = \frac{(-1)^{l-m}}{2^l} \sqrt{\frac{(l + m)!}{(l - n)!(l + n)!(l - m)!}} \sqrt{\frac{(1 - x)^{n-m}}{(1 + x)^{m+n}}} \frac{d^{l-m}}{dx^{l-m}} \frac{(1 + x)^{n+l}}{(1 - x)^{n-l}}$$

are called Wigner-d functions.
The D_{lm}^m are not normalized with respect to the inner product $\langle \cdot, \cdot \rangle$:

$$\|D_{lm}^m(g)\|_{L^2(SO(3))}^2 = \frac{4\pi^2}{l + \frac{1}{2}}.$$

A special case:

$$Y_l^m(\xi) = Y_l^m(\beta, \alpha) = (-1)^{\delta_{m|m|}} \sqrt{\frac{2l - 1}{4\pi}} D_{l}^{0,-m}(\alpha, \beta, \gamma)$$

where $(\beta, \alpha) \in [0, \pi] \times [0, 2\pi)$ are the polar coordinates of the point $\xi \in \mathbb{S}^2$.
An orthogonal basis

By means of the Peter-Weyl-Theorem the harmonic spaces

\[\text{Harm}_l(SO(3)) = \text{span} \{ D_{lmn} : m, n = -l, \ldots , l \} \]

spanned by the Wigner-D functions satisfy

\[L^2(SO(3)) = \text{clos}_{L^2} \bigoplus_{l=0}^{\infty} \text{Harm}_l(SO(3)). \]

Hence the collection of Wigner-D functions \(\{ D_{lmn}(g) : l \in \mathbb{N}_0, m, n = -l, \ldots , l \} \) forms an orthogonal basis system in \(L^2(SO(3)) \).

Every function \(f \in L^2(SO(3)) \) has a unique series expansion in terms of the Wigner-D functions

\[f(g) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}_{lmn} D_{lmn}(g), \]

where \(g \in SO(3) \) and the \(SO(3) \) Fourier coefficients \(\hat{f}_{lmn} \) are given by the integral

\[\hat{f}_{lmn} = \frac{l + \frac{1}{2}}{4\pi^2} \langle f, D_{lmn} \rangle. \]
The function spaces \mathbb{D}_B

Moreover we define the function spaces

$$\mathbb{D}_B = \bigoplus_{l=0}^{B} \text{Harm}_l(\text{SO}(3))$$

for arbitrary $B \in \mathbb{N}$. The dimension of these spaces is given by

$$\dim(\mathbb{D}_B) = \sum_{l=0}^{B} (2l + 1)^2 = \frac{1}{3} (B + 1)(2B + 1)(2B + 3).$$

B-bandlimited functions $f \in \mathbb{D}_B$ can be written as their own finite Fourier partial sum

$$f(g) = \sum_{l=0}^{B} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}_{l}^{mn} D_{l}^{mn}(g).$$
Nonequispaced Discrete Fourier Transforms on SO(3) (NDSOFT)

Consider sampling sets of three-dimensional non-equispaced data

$$\mathcal{X}_M = \{g(\alpha_q, \beta_q, \gamma_q) : q = 0, \ldots, M - 1\}$$

where $0 \leq \alpha_q, \gamma_q < 2\pi$ and $0 \leq \beta_q \leq \pi$ are Euler angles.

The Fourier sum of a B-band-limited function $f \in \mathbb{D}_B$ reads as

$$f(\alpha_q, \beta_q, \gamma_q) = \sum_{l=0}^{B} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}_l^{mn} D_l^{mn}(\alpha_q, \beta_q, \gamma_q)$$

for $q = 0, \ldots, M - 1$.

\Rightarrow nonequispaced discrete Fourier transform on the rotation group (NDSOFT)

$$f = D\hat{f}$$

with

- $f = (f(g))_{g \in \mathcal{X}_M} \in \mathbb{C}^M$, the function samples
- $\hat{f} = (\hat{f}_l^{mn})_{(l,m,n) \in \mathcal{I}_B} \in \mathbb{C}^{\frac{1}{3}(B+1)(2B+1)(2B+3)}$, the SO(3) Fourier coefficients
- $D = (D_l^{mn}(\alpha_q, \beta_q, \gamma_q))_{(\alpha_q, \beta_q, \gamma_q) \in \mathcal{X}_M; (l,m,n) \in \mathcal{I}_B} \in \mathbb{C}^{M \times \frac{1}{3}(B+1)(2B+1)(2B+3)}$ the nonequispaced SO(3) Fourier matrix
A note on complexity

Computing

\[f = D\hat{f} \]

- lower bound: \(\mathcal{O}(B^3) \) Fourier coefficients and \(\mathcal{O}(M) \) nodes as input values
 \[\Rightarrow \mathcal{O}(M + B^3) \] flops

- naive approach: matrix-multiplication with \(D \in \mathbb{C}^{M \times \frac{1}{3}(B+1)(2B+1)(2B+3)} \)
 \[\Rightarrow \mathcal{O}(MB^3) \] flops

- our approach on nonequispaced grids on the \(SO(3) \):
 - generalizing an algorithm for the Fourier transform of scattered data on the sphere \(S^2 \) presented in the works of Kunis, Potts
 - use the nonequispaced fast Fourier transform (NFFT) algorithm from Potts, Steidl, Tasche and a fast polynomial transform
 \[\Rightarrow \mathcal{O}(B^3 \log^2 B + M) \]
Getting faster, Step 1: Rearranging sums

We split up the Wigner-D functions according to the Euler angles of \(f(\alpha_q, \beta_q, \gamma_q) \in D_B \) for \(q = 0, \ldots, M - 1 \):

\[
\begin{align*}
\hat{f} \left(\alpha_q, \beta_q, \gamma_q \right) &= \sum_{l=0}^{B} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}^{mn}_l D^{mn}_l (\alpha_q, \beta_q, \gamma_q) \\
&= \sum_{l=0}^{B} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}^{mn}_l e^{-i m \alpha_q} d^{mn}_l (\cos \beta_q) e^{-i n \gamma_q}.
\end{align*}
\]

The next step is to rearrange these sums into

\[
\begin{align*}
\hat{f} \left(\alpha_q, \beta_q, \gamma_q \right) &= \sum_{m=-B}^{B} e^{-i m \alpha_q} \sum_{n=-B}^{B} e^{-i n \gamma_q} \sum_{l=\max(|m|,|n|)}^{B} \hat{f}^{mn}_l d^{mn}_l (\cos \beta_q).
\end{align*}
\]
The discrete Wigner transform

Wigner-d functions:

\[d_{l,m}^{n,n}(x) = \frac{(-1)^{l-m}}{2^l} \sqrt{\frac{(l+m)!}{(l-n)!(l+n)!(l-m)!}} \sqrt{\frac{(1-x)^{n-m}}{(1+x)^{m+n}}} \frac{dl-m}{dx^{l-m}} \frac{(1+x)^{n+l}}{(1-x)^{n-l}} \]

- for \(m + n \) even: \(d_{l,m}^{n,n}(x) \) are polynomials of degree at most \(l \)
- for \(m + n \) odd: \((1 - x^2)^{-1/2} d_{l,m}^{n,n}(x) \) are polynomials of degree \(l - 1 \)

\[
\sum_{l=\max(|m|,|n|)}^{B} \hat{f}_{l,m}^{n,n}(\cos \theta) = \begin{cases}
\sum_{l=0}^{B} t_{l,m}^{n,n} T_l(\cos \theta) & \text{for } m + n \text{ even}, \\
\sin \theta \sum_{l=0}^{B-1} t_{l,m}^{n,n} T_l(\cos \theta) & \text{for } m + n \text{ odd}
\end{cases}
\]

in matrix-vector notation:

\[\mathbf{t}_{mn} = \mathbf{W}_{mn}^{mn} \hat{\mathbf{f}}^{mn} \]

with \(\hat{\mathbf{f}}^{mn} = \left(\hat{f}_{\max(|m|,|n|)}^{mn}, \ldots, \hat{f}_{B}^{mn} \right)^T \) and \(\mathbf{t}_{mn} = (t_0^{mn}, \ldots, t_B^{mn})^T \) for fixed \(m, n \)
The matrix \(W^{mn} \in \mathbb{C}(B+1) \times (B - \max(|m|,|n|)) \) can be separated into

\[
W^{mn} = \begin{cases}
T\tilde{D}^{mn} & \text{for } m + n \text{ even}, \\
ST\tilde{D}^{mn} & \text{for } m + n \text{ odd}
\end{cases}
\]

where we consider for the \(B + 1 \) nodes of an equispaced grid \(\chi_C = \left\{ \frac{(2k+1)\pi}{2(B+1)} : k = 0, \ldots, B \right\} \) the matrices

\[
T = \left(\frac{2 - \delta_{0k}}{B + 1} \cos \frac{(2l + 1)k \pi}{2(B + 1)} \right)_{k,l=0,\ldots,B},
\]

\[
\tilde{D}^{mn} = \left(d_l^{mn} \cos \frac{(2k + 1)\pi}{2(B + 1)} \right)_{(k=0,\ldots,B);(l=\max(|m|,|n|),\ldots,B)}
\]

and

\[
S = \text{diag} \left(\left(\sin \frac{(q + 1)\pi}{B + 2} \right)^{-1} \right)_{q=0,\ldots,B}.
\]
The separation of W^{mn}

A simple calculation shows that the inverse of T and S are given by

$$T^{-1} = \left(\cos \left(\frac{(2k + 1)l \pi}{2(B + 1)} \right) \right)_{k,l=0,...,B}$$

and

$$S^{-1} = \text{diag} \left(\sin \left(\frac{(q + 1)\pi}{B + 2} \right) \right)_{q=0,...,B}.$$

We have

$$\tilde{D}^{mn}f^{mn} = \begin{cases}
T^{-1}t^{mn} & \text{for } m + n \text{ even,} \\
T^{-1}S^{-1}t^{mn} & \text{for } m + n \text{ odd}
\end{cases}$$

We obtain the unique solution of

$$t^{mn} = T\tilde{D}^{mn}f^{mn} = W^{mn}f^{mn}$$

for even orders $m + n$, and

$$t^{mn} = ST\tilde{D}^{mn}f^{mn} = W^{mn}f^{mn}$$

for odd orders $m + n$.
The discrete Wigner transform

Notes on the complexity

\[W^{mn} = \begin{cases} T \tilde{D}^{mn} & \text{for } m + n \text{ even}, \\ S T \tilde{D}^{mn} & \text{for } m + n \text{ odd} \end{cases} \]

- matrix vector multiplication with \(T \): with the discrete cosine transform (DCT) in \(O(B \log B) \) flops
- matrix vector multiplication with \(S \): a diagonal matrix multiplication in \(O(B) \) flops
- matrix vector multiplication with \(\tilde{D}^{mn} \): for fixed \(m \) and \(n \) recursive computation in \(O(B^2) \) flops with the Clenshaw algorithm
- \((2B + 1)^2\) many vectors \(t^{mn} \) to be computed
 \[\Rightarrow \text{total complexity of this transformation step: } O(B^4) \text{ flops.} \]
 \[\Rightarrow \text{speed up the multiplication with } \tilde{D}^{mn} \text{ by adopting the fast polynomial transform (Driscoll/Healy, Potts/Steidl/Tasche)} \]
Dealing with the matrices \tilde{D}^{mn}

- evaluate the following three-term recurrence relation: for $|m|, |n| \leq l$

$$d_{l+1}^{mn}(x) = (u_l^{mn} x + v_l^{mn})d_{l}^{mn}(x) + w_l^{mn}d_{l-1}^{mn}(x), \quad x = \cos \theta,$$

with the recurrence coefficients

$$u_l^{mn} = \frac{(l + 1)(2l + 1)}{\sqrt{((l + 1)^2 - m^2)((l + 1)^2 - n^2)}},$$

$$v_l^{mn} = \frac{-mn(2l + 1)}{l \sqrt{((l + 1)^2 - m^2)((l + 1)^2 - n^2)}},$$

$$w_l^{mn} = \frac{-(l + 1) \sqrt{(l^2 - m^2)(l^2 - n^2)}}{l \sqrt{((l + 1)^2 - m^2)((l + 1)^2 - n^2)}},$$

where we set $d_l^{mn}(x) = 0$ for all $l < \max(|m|, |n|)$ and $d_{\max(|m|,|n|)}^{mn}$ are given to start the recurrence.
Towards the Fast Wigner Transform

Step 1: A new three term recurrence for better stability
For \(m, n = -B, \ldots, B \) and \(l \in \mathbb{N}_0 \) (for \(|m|, |n| > l \), too.):

\[
d_{l+1}^{mn}(x) = (\alpha_l^{mn} x + \beta_l^{mn})d_l^{mn}(x) + (\gamma_l^{mn})d_{l-1}^{mn}(x), \quad x = \cos \theta,
\]

where for \(\mu = \min(|m|, |n|) \) and \(\nu = \max(|m|, |n|) \) we get

\[
\alpha_0^{mn} = \begin{cases}
1 & \text{for } m = n, \\
-1 & \text{for } m + n \text{ even}, \\
0 & \text{otherwise},
\end{cases} \quad \alpha_l^{mn} = \begin{cases}
(-1)^{m+n+1} & \text{for } l \leq \nu - \mu, \\
\frac{mn}{|mn|} & \text{for } \nu - \mu < l < \nu, \\
u_l^{mn} & \text{otherwise},
\end{cases}
\]

\[
\beta_l^{mn} = \begin{cases}
1 & \text{for } 0 \leq l < \nu, \\
0 & \text{for } m = n = 0, \\
v_l^{mn} & \text{otherwise}
\end{cases} \quad \text{and} \quad \gamma_l^{mn} = \begin{cases}
0 & \text{for } l \leq \nu, \\
w_l^{mn} & \text{otherwise},
\end{cases}
\]

using \(u_l^{mn}, v_l^{mn} \) and \(w_l^{mn} \), the old recurrence coefficients. We set \(d_{-1}^{mn} = 0 \) and

\[
d_0^{mn}(x) = \begin{cases}
\sqrt{(2\mu)!} & \text{for } m + n \text{ even}, \\
\frac{\sqrt{(2\mu)!}}{2^\mu \mu!} & \text{for } m + n \text{ odd}.
\end{cases}
\]
Towards the Fast Wigner Transform

Step 2: Associated Wigner-d functions
Following Kunis/Potts we perform the fast polynomial multiplication based on discrete cosine transforms (DCT).

- associated Wigner-d functions $d_{i}^{mn}(\cdot, c)$

$$
\begin{align*}
 d_{-1}^{mn}(x, c) &= 0, \\
 d_{0}^{mn}(x, c) &= 1, \\
 d_{i+1}^{mn}(x, c) &= (\alpha_{i+c}^{mn} x + \beta_{i+c}^{mn})d_{i}^{mn}(x, c) + \gamma_{i+c}^{mn}d_{i-1}^{mn}(x, c)
\end{align*}
$$

- shift the degree l of d_{i}^{mn} by $c \in \mathbb{N}_0$ step instead of only one at a time

$$
 d_{i+c}^{mn}(x) = d_{c}^{mn}(x, l)d_{i}^{mn}(x) + \gamma^{mn}d_{c-1}^{mn}(x, l + 1)d_{i-1}^{mn}(x).
$$

- reorganization leads to a cascade summation

- perform the fast polynomial transform (Driscoll/Healy, Potts/Steidl/Tasche) in $\mathcal{O}(B \log^2 B)$ flops per set of orders m, n

\Rightarrow total complexity of $\mathcal{O}(B^3 \log^2 B)$ flops instead of the previous $\mathcal{O}(B^4)$ flops
Getting faster, Step 2: Basis transforms

\[f(\alpha_q, \beta_q, \gamma_q) = \sum_{m=-B}^{B} \sum_{n=-B}^{B} \sum_{l=\max(|m|,|n|)}^{B} \hat{f}_{mn}^l d_{mn}^l (\cos \beta_q). \]

Performing the change of basis described by the matrices \(W_{mn}\):

\[f(\alpha_q, \beta_q, \gamma_q) = \sum_{m=-B}^{B} \sum_{n=-B}^{B} \sum_{l=0}^{B} t_{mn}^l T_l(\cos \beta_q)(\sin \beta_q)^{\text{mod}(m+n,2)}. \]

The matrices \(A_{mn}\) then provide the change from Chebychev coefficients to standard Fourier coefficients,

\[f(\alpha_q, \beta_q, \gamma_q) = \sum_{m=-B}^{B} \sum_{n=-B}^{B} \sum_{l=-B}^{B} e^{-im\alpha_q} e^{-in\gamma_q} \sum_{l=-B}^{B} h_{mn}^l e^{-i\beta_q} h_{mn}^l. \]

\[= \sum_{m=-B}^{B} \sum_{n=-B}^{B} \sum_{l=-B}^{B} h_{mn}^l e^{-i(m\alpha_q+n\gamma_q+l\beta_q)} \]

for \(q = 0, \ldots, M - 1\). Thus we obtain a three-dimensional Fourier transform.
Using \(\cos l \beta = \frac{1}{2}(e^{il\beta} + e^{-il\beta}) \) and \(\sin \beta = \frac{i}{2}(e^{-i\beta} - e^{i\beta}) \) we get

\[
H_{mn} = \begin{pmatrix}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{pmatrix},
O_{mn} = \frac{i}{2} \begin{pmatrix}
0 & 1 \\
-1 & \cdots & \cdots \\
\cdots & \cdots & 1 \\
-1 & 0
\end{pmatrix}
\in \mathbb{C}^{(2B+1) \times (B+1)}.
\]

(4.1)

such that

\[
A_{mn} = \begin{cases}
H_{mn} & \text{for } m + n \text{ even}, \\
O_{mn}H_{mn} & \text{for } m + n \text{ odd}.
\end{cases}
\]

satisfying

\[
h_{mn} = A_{mn}t_{mn}.
\]

The multiplication of \(A_{mn} \) can be done in \(\mathcal{O}(B) \) steps as it is a sparse one. So for all possible \(m, n \) this yields \(\mathcal{O}(B^3) \) flops in total.
The Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)

Theorem

The matrix \hat{D} with $f = \hat{D} \hat{f}$ representing the NDSOFT can be splitted into the matrix product $D = FAW$ with

- the block diagonal matrix consisting of the matrices W^{mn}:

$$W = \text{diag} \left(W^{mn} \right)_{m,n=-B,...,B} \in \mathbb{C}^{(2B+1)^2(B+1) \times (2B+1)^2(B+1)}$$

- the diagonal block matrix composed of blocks A^{mn}:

$$A = \text{diag} \left(A^{mn} \right)_{m,n=-B,...,B} \in \mathbb{C}^{(2B+1)^3 \times (2B+1)^2(B+1)}$$

- a three-dimensional Fourier matrix $F \in \mathbb{C}^{M \times (2B+1)^3}$:

$$F = \left(e^{-i \left((m,l,n)(\alpha_q,\beta_q,\gamma_q)^T \right)} \right)_{q=0,...,M-1; (l,m,n) \in \mathcal{I}_B}.$$
The Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)

The whole algorithm

Algorithm 1 Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)

<table>
<thead>
<tr>
<th>Input:</th>
<th>$B \in \mathbb{N}$ the bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\mathcal{X}_M a sampling set</td>
</tr>
<tr>
<td></td>
<td>$\tilde{f} = (\tilde{f}^mn)$ the $\frac{1}{3}(B+1)(2B+1)(2B+3)$ SO(3) Fourier coefficients of $f \in \mathbb{D}_B$</td>
</tr>
</tbody>
</table>

1. Compute $t = W\tilde{f}$, the vector of $(B+1)(2B+1)^2$ Chebychev coefficients t_i^{mn} in $O(B^3 \log^2 B)$ flops.

2. Compute $h = A t$, the vector of $(2B+1)^3$ Fourier coefficients h_i^{mn} in $O(B^3)$ flops.

3. Compute $f = F h$ by means of a trivariate NFFT in $O(B^3 \log B + M)$ flops.

Output: $f = (f(\alpha_q, \beta_q, \gamma_q))_{q=0, \ldots, M-1}$ the function samples of $f \in \mathbb{D}_B$

Complexity: $O(B^3 \log^2 B + M)$ flops
Some numerical results: The NDSOFT and NFSOFT at different bandwidths B and $M = B^3$ nodes
The NDSOFT and NFSOFT at different number of nodes M and bandwidth $B = 24$
The Docking Problem

Input: coordinates of the atoms of two single protein molecules

Docking: modelling \rightarrow matching \rightarrow refined scoring

Output: coordinates of the atoms of the new molecule

Stage 1: Modelling

Affinity function for $\mathbf{x} \in \mathbb{R}^3$:

$$Q(\mathbf{x}) = \sum_{k=1}^{M} \gamma_k \kappa(\mathbf{x} - \mathbf{z}_k)$$

with weights γ_k and $\kappa(\mathbf{x} - \mathbf{z}_k)$ being the electron density of the k-th atom at $\mathbf{x} \in \mathbb{R}^3$.

Task for Stage 2: Find the maximal overlap of the two molecular skins.
Fast Rotational Matching

Molecules are assumed to be inflexible:

- manipulation by rigid body motion
- 6D-search space:
 - 3 degrees of freedom for the rotation $R \in SO(3)$ of the molecule A
 - 3 degrees of freedom for the motion of molecule B:
 - compute fastly the two remaining rotation parameter of R' by fast Fourier transforms
 - perform a global search the optimal value ρ of the translation of molecule B along one axis

$$
\arg \max_{\rho, R, R'} C_\rho(R, R') = \arg \max_{\rho, R, R'} \int_{\mathbb{R}^3} \Lambda_R Q^A(\vec{x}) \quad T^\rho \Lambda_{R'} Q^B(\vec{x}) \, d\vec{x}
$$
Adapting the modell for fast rotational Matching

For all $x \in \mathbb{R}^3$ where $x = ru$ mit $r = |x|$ and $u \in S^2$:

$$\tilde{Q}^A(x) = \tilde{Q}^A(ru) = \sum_{l=0}^{B-1} \sum_{m=-l}^{l} \hat{a}_l^m(r) Y_l^m(u)$$

- Translation along the z-axis: $t = (0, 0, \rho)^T$

$$T^\rho \tilde{Q}^B \left(r \begin{pmatrix} \vartheta \\ \phi \end{pmatrix} \right) = \tilde{Q}^B \left(r' \begin{pmatrix} \vartheta' \\ \phi' \end{pmatrix} \right)$$

- Rotation:

$$\Lambda_R \tilde{Q}^A(ru) = \sum_{l=0}^{B-1} \sum_{m=-l}^{l} \hat{a}_l^m(r) Y_l^m(R^{-1}u)$$

$$= \sum_{l=0}^{B-1} \sum_{k=-l}^{l} \sum_{m=-l}^{l} \hat{a}_l^m(r) D_{l}^{km}(R) Y_l^k(u)$$

with Wigner-D-function D_{l}^{km}.
The solution of the docking problem

\[\arg \max_{\rho, R, R'} C_{\rho}(R, R') = \arg \max_{\rho, R, R'} \int_{\mathbb{R}^3} (\Lambda_{\rho} Q^A)(\vec{x}) \quad (T_{\rho}(\Lambda_{R'} Q^B)(\vec{x}))d\vec{x}. \]

becomes

\[C_{\rho}(R, R') = \int_{\mathbb{R}} \int_{\mathbb{S}^2} \sum_{lkm} \hat{a}^m_l (r) D^k_m (R) Y_l^k (u) \sum_{l'm'} \hat{b}^{m'}_{l'}(r') D^{k'}_{l'} (R') Y_{l'}^{k'} (u') r^2 dr du \]

\[= \sum_{ll'kk'mm'} D^k_m (R) D^{k'}_{l'} (R') \underbrace{\int_{\mathbb{R}} \int_{\mathbb{S}^2} \hat{a}^m_l (r) \hat{b}^{m'}_{l'}(r') Y_l^k (u) Y_{l'}^{k'} (u') r^2 dr du}_{J^{kk',mm'}_{ll',mm'}(\rho)} \]

\[= \sum_{ll'km'm'} D^k_m (R) D^{k'}_{l'} (R') J^{k',mm'}_{ll',mm'}(\rho) \]
The five rotation parameter

Splitting up $D_i^{km}(R)$ according to its Euler angles (ϕ, θ, ψ) of $R \in SO(3)$

$$D_i^{km}(R) = D_i^{km}(\phi, \theta, \psi) = e^{-ik\phi} d_i^{km}(\theta) e^{-im\psi}$$

with real-valued Wigner-d function $d_i^{km}(\theta)$ leads to

$$C_{\rho}(R, R') = \sum_{ll'kmm'} J_{ll'}^{k,m'm'}(\rho) D_i^{km}(\phi, \theta, \psi) D_{l'}^{-km'}(\phi', \theta', \psi')$$

$$= \sum_{ll'kmm'} J_{ll'}^{k,m'm'}(\rho) D_i^{km}(\xi, \theta, \psi) d_{l'}^{-km'}(\theta') e^{-im'\psi'}$$

$$= C_{\rho}(\xi, \theta, \psi, \theta', \psi')$$

using one translation parameter ρ and five rotation parameter $\psi, \psi', \theta, \theta'$ and $\xi = \phi - \phi'$.
Docking Example

Thank you for your attention.
The Docking Problem

J. Keiner, S. Kunis, and D. Potts.
NFFT3.0, Software package, C subroutine library.

P. J. Kostelec and D. N. Rockmore.
FFTs on the rotation group.

S. Kunis and D. Potts.
Fast spherical Fourier algorithms.

D. Potts, G. Steidl, and M. Tasche.
Fast algorithms for discrete polynomial transforms.

D. Potts, G. Steidl, and M. Tasche.
Fast Fourier transforms for nonequispaced data: A tutorial.